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Enhanced Heat Dissipation

• Thermal management of IGBT modules
– Heat dissipation +100 W/cm2

– Low, uniform operating temperatures increase chip life
• Current configuration

– Simple flat plate
– High coolant velocity
– Significant temperature gradients on the chip

• Possible improvements
– Implement a highly conductive solid
– Increase heat convection area
– Better flow mixing structures
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Aluminum Foam Properties

• High surface area to volume ratio
– ~3000 m2/m3 uncompressed (natural form)
– ~10,000 m2/m3 compressed

• Highly conductive solid (~218 W/m•K)
• Tortuous flow path
• Easily machined to final size

10 cm
Aluminum foam in as-manufactured,

unaltered state (92% porous)
Aluminum foam (73% porous)
compressed by a factor of four

6.5 cm
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Typical Heat Exchanger Configurations

• Simplest design
• High flow velocity
• Mixing depends on upstream

channel configuration

• Relatively simple
• Minimal increase in surface

area
• Improved mixing through

turbulence enhancers

Coolant Flow

IGBT Module

Highly
Conductive
Bond Layer

Open Channel

IGBT Module

Highly
Conductive
Bond Layer

Turbulence Triggers

Coolant Flow

Enhanced
Mixing
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Metal Foam Heat Exchanger Configurations

• Similar to turbulence
enhancement array

• Lower flow resistance
• Less foam required
• Lower clogging likelihood

• Distributes heat throughout
the coolant stream

• Provides a better basis for
comparison of metal foam
performance data

IGBT Module

Highly
Conductive
Bond Layer

IGBT Module

Highly
Conductive
Bond Layer

METAL FOAM

Foam / Open Channel
Combination

Metal Foam Insert

Vacuum
Brazed
Interface

METAL FOAM Vacuum
Brazed
Interface
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Compressed Foam Experimentation

• Utilize compressed foam—specific surface area ~10,000 m2/m3

• Porosities between 48 – 89%
• Coolant (water) flow velocities up to 2 m/s
• Convection coefficient (measured at plate)  +150 kW/m2•K

Compressed Foam Close-up Brazed Heater Assembly on a 18% AlSiC plate

2 mm 7 mm
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Experimental Apparatus

• Pressure drop measurement
• Coolant temperature at

various locations
• USB data acquisition device

– Temperatures
– Pressure

• 1200 W delivered by
cartridge heaters

• Power input
– Oscilloscope measurement
– Temperature change  in

coolant
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Pressure Drop and Heat Convection Coefficients

• Forchheimer-extended
Darcy equation

• Convection coefficient
measured at plate
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cF Forchheimer coefficient

K permeability

L foam length

v flow velocity

∆p pressure difference

µ dynamic viscosity

ρ fluid density

A area

c specific heat

h’’ convection coefficient

m mass flux

T temperature
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Flow Characterization Experimental Results

• Porosity decrease =
pressure drop decrease

• Significant pressure drop
compared to flat plate

∆P/L (kPa/m)

v (m/s)

∆P (kPa)

• Monotonic increase of K with
porosity

• Increase in sensitivity of K
with increase in porosity
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Full Power

v (m/s)

∆ T (K)

• Control of temperature
gradient

• Poor performance by plate
• Note: Limited range for full

power for the bare plate

Heat Transfer Experimental Results

• Higher solid fraction
provides a higher heat
convection coefficient

• Results are independent of
heater attachment
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• Basis for real-world performance
comparison

• Favorable power—thermal
resistance curve

• Poor performance by bare plate

Power-Thermal Resistance Comparison
Pump Power (W)

Rth (kW/K)

• Locate optimum configuration
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• Scaled to predict behavior with
50% ethylene glycol-water
solution

• Assumptions/Considerations
• Identical K and cF

• Similar operating
temperature

• Increase in flow rate
compensates lower heat
capacitanceHeat Exchanger with Turbulence

0.2 mm Narrow Gap (clear)

Behr Heat Exchanger

Scaled Performance Comparison
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Rth (kW/K)
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Numerical Approaches

• Experimentally measure flow characteristics
– Requires a wide variety of foam samples
– Large time expenditure
– Limited applicability

• Foam configuration
• Coolant type & flow rate range

• Pore-based analysis
– Idealized three-dimensional solid matrix structure
– Determine periodic flow behavior
– Calculate interstitial convection coefficient
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Foam Structure Idealization

• 14-sided tetrakaidecahedron
• Tetrahedral angle (~109º)
• Adjustments of shape

5 mm
Close-up of a single open cell Model of the tetrakaidecahedron
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Periodic Cell Boundary Conditions

• Periodic Length L
– Velocity

– Pressure
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Visualization of the Flow Field

• Colored pressure gradient
• Red particle traces
• Non-turbulent flow

– ReK < 100 where
– ReK=ρVK½µ-1

• Vortex development in wake
– Describe lack of “transitional

range” in porous media
– Insight into dispersion

effects

Flow Direction
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Periodic Configuration

• Tetrakaidecahedron base
unit

• Not numerically optimized to
minimize surface energy

• Possible tunneling effects
• Inconsistent porosity
• Improvement needed
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Improvement in Periodic Cell Representation
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Wetted Form

• Wetted Weaire-Phelan form
• Numerically optimized

surface energy
• 0.3% lower surface energy
• Composition

– 8 equal volume cells
• 2 dodecahedra
• 6 fourteen sided figures

– 2 hexagonal faces
– 12 pentagonal faces
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Conclusions

• Aluminum foam heat exchanger experiment:
– Significantly higher heat convection coefficient
– More uniform chip operating temperature
– Favorable power input to thermal resistance curve

• Approach of pore-based numerical analysis
– Analyze “transitional” region in porous media
– Possibly directly calculate dispersion effects
– Reduce extensive experimentation


